
This article will cover the basics of getting started with library development in .NET and GitHub
using the CSharp.Mongo.Migration library as an example.

In software development, version control is a must. Sharing, collaboration, and discussion are all
large parts of open source software development. GitHub is a great (and free, for public
repositories) tool to manage:

Code with git
Documentation through wikis
Issue tracking and discussion
Simple kanban style project management 
Continuous integration and continuous delivery (CI/CD)

In order to get started with a new GitHub repository we'll need to sign up for an account (or use an
existing one).

CSharp.Mongo.Migration

Building and Releasing an Open
Source Library using .NET &
GitHub

Open source libraries are a major part of developing software, whether consuming them as
libraries through a package manager, interacting with other developers, or contributing back
to the community, there aren’t many projects or organisations that don’t rely on open
source software.

Setting Up a Repository (with GitHub)

Creating the Repository

Decisions

https://github.com/JordanDChappell/CSharp.Mongo.Migration
https://github.com/signup


There are a number of decisions that should be made before getting started on an open source
library:

1. Name: this is the user visible name of the repository, and therefore library or project, in
.NET this might be the solution name, or root project namespace

2. Open source licence: This licence will help to protect the project from unfair use, see
https://choosealicense.com/ for the basics on selecting a licence

There are some assumed settings for a new open source, .NET repository:

1. Visibility: This should be public, otherwise we aren’t really building an open library!
2. Readme: All public libraries should have a helpful README.md file, here's an example
3. gitignore: ‘Visual Studio’ is the default ignore file for .NET projects
4. Licence: As mentioned above, it's best to include a LICENSE file in the repository root,

here's an example

Default Options

Configuring the Repository

https://choosealicense.com/
https://github.com/JordanDChappell/CSharp.Mongo.Migration/blob/main/README.md
https://github.com/JordanDChappell/CSharp.Mongo.Migration/blob/main/LICENSE
https://bookstack.homelab.jordanchappell.com/uploads/images/gallery/2024-11/image.png


Consider enabling the following extra features for the repository:

1. Wikis: Consider adding a wiki to document the library.
2. Issues: Allows viewers or collaborators to log bugs, or raise ideas for the library

implementation.
3. Projects: Collaborators can view issues in a kanban board and track progress of

milestones.

Now that we have a repository on GitHub with a few of the default files we'll need to initialise a
local clone of the source.

The easiest way to clone a repository is to visit the repository page on GitHub, click the 'Code'
button, copy the repository URL, and run the git clone  command in a terminal:

.NET is a free and open source cross-platform framework supported by Microsoft where most
applications are written in the C# programming language. The platform can be used to build web
and desktop applications, as well as command line utilities, services, and class libraries.

Cloning the Repository

Make sure to install and configure git  and add an SSH key to GitHub before attempting to
clone the repository.

mkdir ~/dev
cd ~/dev
git clone git@github.com:JordanDChappell/CSharp.Mongo.Migration.git

Getting Started With .NET

Prerequisites

https://bookstack.homelab.jordanchappell.com/uploads/images/gallery/2024-07/image.png
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://learn.microsoft.com/en-us/dotnet/csharp/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account


Before diving in we will need the following:

.NET SDK
A code editor or IDE:

Visual Studio
JetBrains Rider
VSCode

The .NET SDK includes a large variety of different project templates that can be viewed here or by
running dotnet new list  from a terminal.

Most .NET projects (especially those that are developed using the Visual Studio IDE) include a
solution ( sln ) file and one or more project files ( csproj ) to organise all of the code and
configuration.

We'll be using the  sln  and classlib  templates to create a library with the same name as our
repository on GitHub:

If you followed along exactly as described above the project will have the following folder structure:

Creating the Project

cd ~/dev/CSharp.Mongo.Migration
dotnet new sln
dotnet new classlib
dotnet sln ./CSharp.Mongo.Migration.sln add ./CSharp.Mongo.Migration.csproj

The solution and project will be named based on the directory that you run the command
from, or can be set explicitly using the --name argument.

~/
├─ dev/
│  ├─ CSharp.Mongo.Migration/
│  │  ├─ .git/
│  │  ├─ obj/
|  |  ├─ .gitignore
│  │  ├─ Class1.cs
│  │  ├─ CSharp.Mongo.Migration.csproj
│  │  ├─ CSharp.Mongo.Migration.sln
|  |  ├─ LICENSE
|  |  ├─ README.md

https://dotnet.microsoft.com/en-us/download
https://visualstudio.microsoft.com/vs/community/
https://www.jetbrains.com/rider/
https://code.visualstudio.com/docs/languages/csharp
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-new-sdk-templates


This structure would be perfectly fine for a very small library with a tiny number of code ( cs ) and
other files, but may become unorganised as the library grows. I suggest that we create the
following directory structure instead with a few simple rules:

Code should be placed in the  src/  directory
C# projects should be placed in their own named directories under the src/  directory
Other IDE and configuration content that does not relate to the source should be in the
root of the repository

E.g. directories like .vscode/  for IDE config, or .github/  for workflows and actions

A .NET .csproj  file can be used to provide information about the project that may be used by
downstream processes, I'd recommend adding the following tags to your own project file:

cd ~/dev/CSharp.Mongo.Migration
dotnet new sln
mkdir src/CSharp.Mongo.Migration
cd src/CSharp.Mongo.Migration
dotnet new classlib
dotnet sln ~/dev/CSharp.Mongo.Migration/CSharp.Mongo.Migration.sln add ./CSharp.Mongo.Migration.csproj

~/
├─ dev/
│  ├─ CSharp.Mongo.Migration/
│  │  ├─ .git/
│  │  ├─ src/
│  │  │  ├─ CSharp.Mongo.Migration/
│  │  │  │  ├─ obj/
│  │  │  │  ├─ Class1.cs
│  │  │  │  ├─ CSharp.Mongo.Migration.csproj
│  │  ├─ .gitignore
│  │  ├─ CSharp.Mongo.Migration.sln
│  │  ├─ LICENSE
│  │  ├─ README.md

Note: you will need to update your solution references if you manually move the
CSharp.Mongo.Migration  project directory.

Project Settings

<RootNamespace>CSharp.Mongo.Migration</RootNamespace>
<PackageId>CSharp.Mongo.Migration</PackageId>



It's pretty important for any software project to include a variety of different kinds of automated or
manual test processes. When creating something open source, automated tests that gate PRs and
releases can help to reduce problems or issues, and are a great way to give others confidence in
using your library.

There are three main testing libraries that are recommended in the .NET ecosystem:

1. MSTest
2. NUnit
3. xUnit

As before, the .NET SDK includes templates for unit test projects, and specifically, one for xUnit .
Let's create a new project directory and unit test project in our codebase, link the required project
and solution files, and add package references:

<Title>CSharp.Mongo.Migration</Title>
<Authors>Jordan Chappell</Authors>
<Copyright>Copyright (c) Jordan Chappell (2024).</Copyright>
<Description>
  Simple script based MongoDB database migrations written and run in .NET.
  GitHub: https://github.com/JordanDChappell/CSharp.Mongo.Migration
</Description>
<Tags>mongo, mongodb, migration, database</Tags>
<RepositoryUrl>https://github.com/JordanDChappell/CSharp.Mongo.Migration</RepositoryUrl>
<RepositoryType>git</RepositoryType>
<PackageLicenseExpression>MIT</PackageLicenseExpression>
<PackageReadmeFile>README.md</PackageReadmeFile>
<GenerateDocumentationFile>true</GenerateDocumentationFile>

We've described a lot of information about our library in the  .csproj  file above, ensure that
you tailor the content to suit your own use case.

Testing in .NET

Test Libraries

In this example, we'll be using xUnit  as the library for writing and running tests as well as
AutoMoqCore for simple dependency mocking in our tests.

Creating a Test Project

https://github.com/microsoft/testfx
https://nunit.org/
https://xunit.net/
https://github.com/thomashfr/AutoMoqCore


NuGet is a package repository and management tool that is provided alongside the .NET
ecosystem. It's the most simple way to host your library for others to utilise. In order to submit a
package to NuGet, we'll need to bundle our library into something that it can recognise and accept.

In order to push packages to NuGet you will need to sign up for a free account using an existing
Microsoft account and optionally create an API key.

The .NET SDK comes with a command that will bundle our library, including a  .nupkg  and any other
outputs that are required of the library.

In order to package the  CSharp.Mongo.Migration  library code, run the following command:

We have packaged the library with some arguments:

Release configuration
Version 0.0.1-alpha
An output directory separate to the source code

mkdir ~/dev/CSharp.Mongo.Migration/src/CSharp.Mongo.Migration.Test
cd ~/dev/CSharp.Mongo.Migration/src/CSharp.Mongo.Migration.Test
dotnet new xunit
dotnet sln ../../CSharp.Mongo.Migration.sln add ./CSharp.Mongo.Migration.Test.csproj
dotnet add ./CSharp.Mongo.Migration.Test.csproj reference 
../CSharp.Mongo.Migration/CSharp.Mongo.Migration.csproj
dotnet add ./CSharp.Mongo.Migration.Test.csproj package AutoMoqCore

Packaging & NuGet

NuGet

Dotnet Pack

dotnet pack --configuration Release \
  /p:PackageVersion=0.0.1-alpha \
  ~/dev/CSharp.Mongo.Migration/src/CSharp.Mongo.Migration/CSharp.Mongo.Migration.csproj \
  --output ~/dev/packages/CSharp.Mongo.Migration

It's a good idea to include your project's README file with your NuGet package, this can be
achieved by linking the README file as a project file. See my CSharp.Mongo.Migration.csproj
file for an idea of how to include a packaged / linked file.

https://nuget.org
https://github.com/JordanDChappell/CSharp.Mongo.Migration/blob/main/src/CSharp.Mongo.Migration/CSharp.Mongo.Migration.csproj


Once we've generated our package, we could simply upload the required files to NuGet using our
web browser. This would be a valid approach if we didn't have plans to release more than a couple
of versions of the library. The .NET SDK includes a  nuget  command which can be used to push our
package to the repository.

Once we've set up an account and created an API key, we can run the following command to push
our package to NuGet:

GitHub offers a well supported CI/CD platform called Actions that is extremely easy to integrate
into a project hosted on GitHub. Actions offers a set of hosted runners across Linux, Windows, and
MacOS that are free and unlimited for use in public repositories.

The CSharp.Mongo.Migration project has 4 different workflows:

1. CI: Build the project on every pushed commit
2. PR: Test, and check code formatting on PR creation and update
3. Docs: Extract in-code documentation and release to a wiki page, runs on changes merged

to the main branch
4. CD: Deploy a new version of the package to NuGet each time a GitHub Release is created

This is one of the cornerstones of continuous integration, building code that is pushed to a shared
repository will reduce the number of errors introduced when changes are made.

This workflow builds the source code on every pushed commit, in .NET this is a single terminal
command:

NuGet Push

cd ~/dev/packages/CSharp.Mongo.Migration
dotnet nuget push "*.nupkg" --api-key {{yourApiKeyGoesHere}} --source https://api.nuget.org/v3/index.json

NuGet completes a package validation process before a package is considered published, if
you can't immediately see your package, wait at least 10 minutes for the validation to
complete.

CI/CD in GitHub

Workflows are written in YAML and are composed of one or more jobs that can be run
sequentially or in parallel. Jobs will run inside their own VM / container.

CI - Build

https://docs.github.com/en/actions


This workflow runs for pull requests and will build and test the source code to ensure that changes
don't fail any existing assertions before they are merged into the main branch.

In .NET, we run the following terminal command to run tests in a project:

A less common workflow that extracts documentation from the code and pushes it to a central wiki
so that it can be referenced by developers and users of the library.

Any commit that is made on the main branch, often as the result of a successful pull request, will
trigger this workflow.

We'll cover more on the documentation for this library a little later.

The deployment workflow isn't actually achieving continuous delivery for the library, but it does
automatically deploy the package to NuGet when a release is created in GitHub.

The trigger for this workflow is fired when a release is created and published in GitHub, the
workflow will then build, package, and push the library to NuGet, with a version identifier matching
the name of the release.

There are stacks of software project management tools available, ranging from free or open source
to paid cloud based SaaS solutions. These products aren't going to be covered as part of this
document, instead we will focus on one of the tools that was suggested to be enabled when setting
up the repository.

CI - Test

dotnet test 
~/dev/CSharp.Mongo.Migration/src/CSharp.Mongo.Migration.Test/CSharp.Mongo.Migration.Test.csproj

Docs

CD - Deploy

Documentation

Tracking Issues and Development



The CSharp.Mongo.Migration library utilises free tools available directly in GitHub for tracking and
managing issues and features: GitHub Issues and Projects.

Issues can be used for a wide variety of things in GitHub, most commonly they are a way to track
tasks and features, or to receive feedback and bug reports from users of your library.

A very simple Kanban / task tracking board that integrates with issues, milestones, and releases.

I wouldn't recommend GitHun Projects for anything larger than a handful of people working on a
small library, but it was useful to see the  features that needed to be implemented before the
library could be released.

GitHub Issues

GitHub Projects

Revision #38
Created 5 June 2024 09:24:32 by JordanDChappell
Updated 24 November 2024 08:59:18 by JordanDChappell


